Strict Standards: Only variables should be passed by reference in /var/www/spimash_new/data/www/spimash.ru/engine/modules/functions.php on line 805 Strict Standards: Only variables should be passed by reference in /var/www/spimash_new/data/www/spimash.ru/engine/modules/functions.php on line 806 Deprecated: mysql_escape_string(): This function is deprecated; use mysql_real_escape_string() instead. in /var/www/spimash_new/data/www/spimash.ru/engine/classes/mysqli.class.php on line 150 Deprecated: mysql_escape_string(): This function is deprecated; use mysql_real_escape_string() instead. in /var/www/spimash_new/data/www/spimash.ru/engine/classes/mysqli.class.php on line 150 Deprecated: mysql_escape_string(): This function is deprecated; use mysql_real_escape_string() instead. in /var/www/spimash_new/data/www/spimash.ru/engine/classes/mysqli.class.php on line 150 Deprecated: mysql_escape_string(): This function is deprecated; use mysql_real_escape_string() instead. in /var/www/spimash_new/data/www/spimash.ru/engine/classes/mysqli.class.php on line 150 Strict Standards: Only variables should be passed by reference in /var/www/spimash_new/data/www/spimash.ru/index.php on line 98 Атом. Электрический ток.
.: Навигация

.: Кафедры
  • Машины и технология литейного производства
  • Машины и технология обработки металлов давлением
  • Химии
  • Технологии металлов и металловедения
  • Электротехники, вычислительной техники и автоматизации
  • Теоретической механики
  • Теории механизмов и машин
  • Кафедра технологии машиностроения
  • Сопротивление материалов и теории упругости
  • Триботехника
  • Турбиностроение и средства автоматики
  • Высшей математики
  • Менеджмента
  • Экономики и предпринимательства
  • Истории и общей экономической теории
  • Философии
  • Безопасности жизнедеятельности и промышленной экологии

    .: Авторизация
    Логин
    Пароль
     
    .: Голосование

    Корочка нужна
    Без образования никуда
    От армии кошу



    .: Самые читаемые
    » Культура России 18 века
    » Курсовая работа по ТАУ - 4 курс
    » Реферат по истории "Культура 18 века России"
    » Реферат по истории "Первая мировая война 1914-1918 года" - 1 курс
    » Реферат по экологии "Общие экологические проблемы городов мира."
    » Роль знаний в жизни индивида
    » Курсовой проект по "Детали машин" - 4 курс
    » Пример отчета по практике
    » Общая химия. Основные классы неорганических соединений.
    » Шпоргалка по истории "все основные даты" - 1 курс
    » Курсовая работа по "ПРОЕКТИРОВАНИЕ И РАСЧЁТ НАДЁЖНОСТИ ТИРИСТОРНОГО ПРЕОБРАЗОВАТЕЛЯ"
    » Основные законы химии
    » КУРСОВАЯ РАБОТА: Кадровые стратегии организации
    » Как правильно самому написать реферат
    » МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ И РЕЖИМЫ РАБОТЫ ТРЕХФАЗНЫХ АСИНХРОННЫХ ДВИГАТЕЛЕЙ
    » Исторические даты. История за 1 курс.
    » Курсовая работа по "Токарные и токарно-винторезные станки"
    » Химическая кинетика и равновесие.
    » Курсовой проект по надежности "НАДЕЖНОСТЬ СИСТЕМ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ"
    » Шпоргалки по истории
    » ТСА Лекция. Технические средства систем автоматизации
    » Все уроки по английскому языку ( юниты unit )
    » Курсовой проект - Автоматизированный электропривод
    » Химия. Таблица кислот.
    » Конспект история техники. Весь констпект.

    .: Спонсоры проекта
    изготовление жаропрочное стекло steklorobax.ru

    .: Архив
    Июль 2011 (1)
    Январь 2010 (1)
    Декабрь 2009 (1)
    Июль 2009 (45)
    Июнь 2009 (38)
    Май 2009 (41)
    Апрель 2009 (42)
    Март 2009 (40)
    Февраль 2009 (41)
    Январь 2009 (47)
    Декабрь 2008 (47)
    Ноябрь 2008 (48)
    Октябрь 2008 (42)
    Сентябрь 2008 (45)
    Август 2008 (45)
    Июль 2008 (44)
    Июнь 2008 (44)
    Май 2008 (48)
    Апрель 2008 (47)
    Март 2008 (47)
    Февраль 2008 (47)
    Январь 2008 (45)
    Декабрь 2007 (41)
    Ноябрь 2007 (51)
    Октябрь 2007 (47)
    Сентябрь 2007 (39)
    Август 2007 (49)
    Июль 2007 (44)
    Июнь 2007 (41)
    Май 2007 (42)
    Апрель 2007 (35)
    Март 2007 (37)
    Февраль 2007 (31)
  •  

    Поиск по сайту:

    Атом. Электрический ток.
    Раздел: Материалы » Рефераты | 18 03 09 | Автор:bizdrya | просмотров: 6520 | печать
     (голосов: 0)

    Содержание

    I.ОСНОВНЫЕ ПОЛОЖЕНИЯ ПРИРОДЫ ЭЛЕКТРОМАГНИТНЫХ ВЗАИМОДЕЙСТВИЙ. АТОМ ЭЛЕКТРИЧЕСТВА. ЗАКОН СОХРАНЕНИЯ ЗАРЯДА. ЗАКОН КУЛОНА 3
    II. ЭЛЕКТРОСТАТИЧЕСКОЕ ПОЛЕ. МЕТАЛЛЫ В ЭЛЕКТРИЧЕСКОМ ПОЛЕ. ТОК. ЗАКОНЫ ОМА И ДЖОУЛЯ-ЛЕНЦА. 8
    СПИСОК ЛИТЕРАТУРЫ 17

    I.Основные положения природы электромагнитных взаимодействий. Атом электричества. Закон сохранения заряда. Закон Кулона

    Электромагнитные взаимодействия - тип фундаментальных взаимодействий (наряду с гравитационным, слабым и сильным), который характеризуется участием электромагнитного поля в процессах взаимодействия.
    Электромагнитное поле (в квантовой физике - фотоны) либо излучается или поглощается при взаимодействии, либо переносит взаимодействие между телами. Так, притяжение между двумя неподвижными телами, обладающими разноименными электрическими зарядами, осуществляется посредством электрического поля, создаваемого этими зарядами; сила притяжения пропорциональна произведению зарядов и обратно пропорциональна квадрату расстояния между ними (закон Кулона). Такая зависимость от расстояния определяет дальнодействующий характер электромагнитных воздействий, его неограниченный (как и у гравитационного взаимодействия) радиус действия. Поэтому даже в атомах (на расстояниях ~ 10-8 см) электромагнитные силы намного порядков превышают ядерные, радиус действия которых ~ 10-12 см.
    Электромагнитное взаимодействие ответственно за существование основных «кирпичиков» вещества: атомов и молекул и определяет взаимодействие ядер и электронов в этих микросистемах. Поэтому к электромагнитному взаимодействию сводится большинство сил, наблюдающихся в макроскопических явлениях: сила трения, сила упругости и др.
    Свойства различных агрегатных состояний вещества (кристаллов, аморфных тел, жидкостей, газов, плазмы), химические превращения, процессы излучения, распространения и поглощения электромагнитных волн определяются электромагнитным взаимодействием. В детекторах частиц высокой энергии используется явление ионизации атомов вещества электрическим полем пролетающих частиц. Процессы расщепления ядер фотонами, реакции фоторождения мезонов, радиационные (с испусканием фотонов) распады элементарных частиц и возбужденных состояний ядер, упругое и неупругое рассеяние электронов, позитронов и мюонов и т. п. обусловлены электромагнитным взаимодействием. Проявления электромагнитного взаимодействия широко используются в электротехнике, радиотехнике, электронике, оптике, квантовой электронике.
    Таким образом, Электромагнитное взаимодействие ответственно за подавляющее большинство явлений окружающего нас мира. Явления, в которых участвуют слабые, медленно меняющиеся электромагнитные поля ( , где w - характерная круговая частота изменения поля, - постоянная Планка, e - энергия поля), управляются законами классической электродинамики, которая описывается Максвелла уравнениями. Для сильных или быстро меняющихся полей ( ) существенны квантовые эффекты. Кванты поля электромагнитного излучения (фотоны, или g-кванты), характеризующие корпускулярные свойства электромагнитного поля, имеют энергию , импульс (n - единичный вектор в направлении распространения электромагнитной волны, с - скорость света), спин J = 1 и отрицательную зарядовую четность (четность относительно операции зарядового сопряжения). Взаимодействия между фотонами g, электронами (е-), позитронами (е+) и мюонами (m+, m-) описываются уравнениями квантовой электродинамики, которая является наиболее последовательным образцом квантовой теории поля. При электромагнитном взаимодействии адронов (сильно взаимодействующих частиц) и атомных ядер существенную роль играет сильное взаимодействие, теория которого пока полностью не разработана.
    Константой электромагнитного взаимодействия в квантовых явлениях служит элементарный электрический заряд е " 4,8×10-10 ед. заряда СГСЭ; интенсивность электромагнитных процессов в микромире пропорциональна безразмерному параметру " 1/137, называется постоянной тонкой структуры; более точное значение (на 1976): a-1 = 137,035987(23).
    Среди других типов взаимодействий электромагнитное взаимодействие занимает промежуточное положение как по «силе» и характерным временам протекания процессов, так и по числу законов сохранения. Отношение безразмерных параметров, пропорциональных квадратам констант сильного, электромагнитного, слабого и гравитационного взаимодействий и характеризующих «силу» взаимодействия протона с протоном при энергии ~ 1 Гэв в системе их центра масс, составляет по порядку величин 1:10-2:10-10:10-38.
    Характерные времена электромагнитных распадов элементарных частиц и возбужденных состояний ядер (10-12-10-21 сек) значительно превосходят «ядерные» времена (10-22 -10-24 сек) и много меньше времен распадов, обусловленных слабым взаимодействием (103-10-11 сек).
    Помимо строгих законов сохранения, справедливых для всех типов взаимодействий (энергии, импульса, момента количества движения, электрического заряда и др.), при электромагнитном взаимодействии, в отличие от слабых взаимодействий, сохраняется пространственная четность, зарядовая четность и странность. С хорошей степенью точности установлено, что электромагнитное взаимодействие инвариантно по отношению к обращению времени.
    Электромагнитное взаимодействие адронов нарушает присущие сильному взаимодействию законы сохранения изотопического спина и G-четности, при этом изотопический спин адронов может измениться при испускании или поглощении фотона не более чем на 1. Унитарная симметрия адронов приводит к определенным соотношениям между электромагнитными характеристиками (например, магнитными моментами) частиц, принадлежащих к одному и тому же унитарному мультиплету.
    Законы сохранения и свойства фотонов в значит, степени определяют специфические черты электромагнитного взаимодействия. Так, равенство нулю массы покоя фотона обусловливает дальнодействующий характер электромагнитного взаимодействия между заряженными частицами, а его отрицательная зарядовая четность - возможность радиационного распада абсолютно нейтральных частиц или связанных систем частиц [т. е. частиц (систем), тождественных своим античастицам], обладающих положит. зарядовой четностью, - p0-мезона, парапозитрония лишь на четное число фотонов. Возможность описания (в соответствующем пределе) электромагнитного взаимодействия в рамках классической (а не только квантовой) физики и его макроскопические проявления обусловлены дальнодействующим характером электромагнитного взаимодействия и тем, что фотоны подчиняются Бозе - Эйнштейна статистике. Малая величина се определяет малость сечений электромагнитных процессов с участием адронов по сравнению с сечениями аналогичных процессов, протекающих за счет сильных взаимодействий; например, сечение рассеяния фотона с энергией 320 Мэв на протоне составляет около 2×10-30 см2, что примерно в 105 раз меньше сечения рассеяния p+-мезона на протоне при соответствующей полной энергии сталкивающихся частиц в системе их центра масс.
    Тот факт, что электрический заряд определяет «силу» взаимодействия и в то же время является сохраняющейся величиной - уникальное свойство электромагнитного взаимодействия; вследствие этого электромагнитные взаимодействия зависят только от электрического заряда частиц и не зависят от типа частиц или электромагнитных процессов.
    При описании электромагнитного поля 4-мерным вектором-потенциалом Аm(m=®0,1,2,3) [А (j, А), А — векторный, j — скалярный потенциалы] плотность лагранжиана L Э. в. поля с зарядом записывается в виде скалярного произведения:
    ,
    где: jm — 4-мерный вектор плотности электрического тока: j = (cr, j), j — плотность тока, r — плотность заряда. При градиентном преобразовании вектор-потенциала, которое называется также калибровочным преобразованием (2-го рода):
    А ® А + grad f (х, t),
    ,
    где jm (x, t) — произвольная функция координат х и времени t, наблюдаемые физические величины (напряженности полей, вероятности электромагнитных процессов и т. п.) остаются неизменными. Это свойство, специфическое для электромагнитного взаимодействия, получило название принципа калибровочной инвариантности - одного из принципов симметрии в природе, выражающего в наиболее общей форме факт существования электромагнитного поля (фотона) и электромагнитного взаимодействия.


    II. Электростатическое поле. Металлы в электрическом поле. Ток. Законы Ома и Джоуля-Ленца.

    Электростатическое поле,
    Электрическое поле неподвижных электрических зарядов, осуществляющее взаимодействие между ними. Как и переменное электрическое поле, Э. п. характеризуется напряжённостью электрического поля Е: отношением силы, действующей на заряд, к величине заряда. Силовые линии напряжённости Э. п. не замкнуты: они начинаются на положительных зарядах и оканчиваются на отрицательных. В диэлектриках Э. п. характеризуется вектором электрической индукции D (см. Индукция электрическая и магнитная). Вектор О удовлетворяет Гаусса теореме. Э. п. потенциально, т. е. работа этого поля по перемещению электрического заряда между двумя точками не зависит от формы траектории: на замкнутом пути она равна нулю. Вследствие потенциальности Э. п. его можно характеризовать одной скалярной функцией — электростатическим потенциалом j, связанным с вектором Е соотношением Е= —grad j. Потенциал j удовлетворяет Пуассона уравнению. В однородном диэлектрике Э. п. вследствие поляризации диэлектрика убывает в e раз, где e — диэлектрическая проницаемость. Внутри проводников Э. п. равно нулю; все точки поверхности проводника имеют один и тот же потенциал j. Если в проводнике есть полость, то Э. п. в ней также равно нулю; на этом основана электростатическая защита электрических приборов.
    Электрический ток в металлах – это упорядоченное движение электронов под действием электрического поля. Опыты показывают, что при протекании тока по металлическому проводнику не происходит переноса вещества, следовательно, ионы металла не принимают участия в переносе электрического заряда.
    Наиболее убедительное доказательство электронной природы тока в металлах было получено в опытах с инерцией электронов. Идея таких опытов и первые качественные результаты принадлежат русским физикам Л. И. Мандельштаму и Н. Д. Папалекси (1913 г.). В 1916 году американский физик Р. Толмен и шотландский физик Б. Стюарт усовершенствовали методику этих опытов и выполнили количественные измерения, неопровержимо доказавшие, что ток в металлических проводниках обусловлен движением электронов.
    Закон Джоуля–Ленца. К концу свободного пробега электроны приобретают под действием поля кинетическую энергию

    Согласно сделанным предположениям, вся эта энергия передается решетке при соударении и переходит в тепло.
    За время Δt каждый электрон испытывает Δt / τ соударений. В проводнике сечением S и длины l имеется nSl электронов. Отсюда следует, что выделяемое в проводнике за время Δt тепло равно:

    Это соотношение выражает закон Джоуля–Ленца.
    Таким образом, классическая электронная теория объясняет существование электрического сопротивления металлов, законы Ома и Джоуля–Ленца. Однако в ряде вопросов классическая электронная теория приводит к выводам, находящимся в противоречии с опытом.
    Эта теория не может, например, объяснить, почему молярная теплоемкость металлов, также как и молярная теплоемкость диэлектрических кристаллов, равна 3R, где R – универсальная газовая постоянная.
    Наличие свободных электронов на сказывается на величине теплоемкости металлов.
    Классическая электронная теория не может также объяснить температурную зависимость удельного сопротивления металлов. Теория дает в то время как из эксперимента получается зависимость ρ ~ T. Однако наиболее ярким примером расхождения теории и опытов является сверхпроводимость.
    Согласно классической электронной теории, удельное сопротивление металлов должно монотонно уменьшаться при охлаждении, оставаясь конечным при всех температурах. Такая зависимость действительно наблюдается на опыте при сравнительно высоких температурах. При более низких температурах порядка нескольких кельвинов удельное сопротивление многих металлов перестает зависеть от температуры и достигает некоторого предельного значения. Однако наибольший интерес представляет удивительное явление сверхпроводимости, открытое датским физиком Х. Каммерлинг-Оннесом в 1911 году.
    Диэлектрики. Поле движущегося заряда. Сила Лоренца. Магнетики.

    Сила Ампера, действующая на отрезок проводника длиной Δl с силой тока I, находящийся в магнитном поле B,
    F = IBΔl sin α
    может быть выражена через силы, действующие на отдельные носители заряда.
    Пусть концентрация носителей свободного заряда в проводнике есть n, а q – заряд носителя. Тогда произведение nqυS, где υ – модуль скорости упорядоченного движения носителей по проводнику, а S – площадь поперечного сечения проводника, равно току, текущему по проводнику:
    I = qnυS.
    Выражение для силы Ампера можно записать в виде:
    F = qnSΔlυB sin α.
    Так как полное число N носителей свободного заряда в проводнике длиной Δl и сечением S равно nSΔl, то сила, действующая на одну заряженную частицу, равна
    FЛ = qυB sin α
    Эту силу называют силой Лоренца. Угол α в этом выражении равен углу между скоростью и вектором магнитной индукции Направление силы Лоренца, действующей на положительно заряженную частицу, так же, как и направление силы Ампера, может быть найдено по правилу левой руки или по правилу буравчика.
    Закон электролиза был экспериментально установлен английским физиком М. Фарадеем в 1833 году. Закон Фарадея определяет количества первичных продуктов, выделяющихся на электродах при электролизе:
    Масса m вещества, выделившегося на электроде, прямо пропорциональна заряду Q, прошедшему через электролит:
    m = kQ = kIt
    Величину k называют электрохимическим эквивалентом.
    Масса выделившегося на электроде вещества равна массе всех ионов, пришедших к электроду:

    Здесь m0 и q0 – масса и заряд одного иона, – число ионов, пришедших к электроду при прохождении через электролит заряда Q. Таким образом, электрохимический эквивалент k равен отношению массы m0 иона данного вещества к его заряду q0.
    Так как заряд иона равен произведению валентности вещества n на элементарный заряд e (q0 = ne), то выражение для электрохимического эквивалента k можно записать в виде

    Здесь NA – постоянная Авогадро, M = m0NA – молярная масса вещества, F = eNA – постоянная Фарадея.
    F = eNA = 96485 Кл / моль.
    Постоянная Фарадея численно равна заряду, который необходимо пропустить через электролит для выделения на электроде одного моля одновалентного вещества.
    Закон Фарадея для электролиза приобретает вид:

    Явление электролиза широко применяется в современном промышленном производстве.
    Проводник с током в магнитном
    поле. Закон Ампера.
    Магнитные явления были известны еще в древнем мире. Компас был изобретен более 4500 лет тому назад. Он появился в Европе приблизительно в XII веке новой эры. Однако только в XIX веке была обнаружена связь между электричеством и магнетизмом и возникло представление о магнитном поле.
    Первыми экспериментами, показавшими, что между электрическими и магнитными явлениями имеется глубокая связь, были опыты датского физика Х. Эрстеда (1820 г.). Эти опыты показали, что на магнитную стрелку, расположенную вблизи проводника с током, действуют силы, которые стремятся повернуть стрелку. В том же году французский физик А. Ампер наблюдал силовое взаимодействие двух проводников с токами и установил закон взаимодействия токов.
    По современным представлениям, проводники с током оказывают силовое действие друг на друга не непосредственно, а через окружающие их магнитные поля.
    Источниками магнитного поля являются движущиеся электрические заряды (токи). Магнитное поле возникает в пространстве, окружающем проводники с током, подобно тому, как в пространстве, окружающем неподвижные электрические заряды, возникает электрическое поле. Магнитное поле постоянных магнитов также создается электрическими микротоками, циркулирующими внутри молекул вещества (гипотеза Ампера).
    Для описания магнитного поля необходимо ввести силовую характеристику поля, аналогичную вектору напряженности электрического поля. Такой характеристикой является вектор магнитной индукции Вектор магнитной индукции определяет силы, действующие на токи или движущиеся заряды в магнитном поле.
    За положительное направление вектора принимается направление от южного полюса S к северному полюсу N магнитной стрелки, свободно устанавливающейся в магнитном поле.
    Таким образом, исследуя магнитное поле, создаваемое током или постоянным магнитом, с помощью маленькой магнитной стрелки, можно в каждой точке пространства определить направление вектора Такое исследование позволяет представить пространственную структуру магнитного поля. Аналогично силовым линиям в электростатике можно построить линии магнитной индукции, в каждой точке которых вектор направлен по касательной.
    В общем случае сила Ампера выражается соотношением:
    F = IBΔl sin α.
    Это соотношение принято называть законом Ампера.
    Принцип работы электрического двигателя и электрического
    генератора.
    Исторически сложилось таким образом, что двигатель и генератор электрической энергии использовались как два различных агрегата и только при необходимости их соединяли в один. Так как вращательное движение удобней для использования, то в двигателе возвратно-поступательное движение преобразовывалось во вращательное. Но в двигатель-генераторе нет необходимости сначала возвратно-поступательное движение преобразовывать во вращательное, а затем в генераторе из этого вращательного движения извлекать прямолинейную составляющую, то есть делать два противоположных преобразования.
    Можно сделать двигатель-генератор, в котором часть замкнутого электрического контура совершает не вращательное движение в магнитном поле, а возвратно-поступательное вместе с шатуном двигателя внутреннего сгорания, Схемы, поясняющие принцип работы традиционного генератора приведены на рис. 1.


      Скачать полную версию - atom.-jelektricheskijj-tok.rar [42.8 Kb] (cкачиваний: 22)



    Информация
    Посетители, находящиеся в группе Гости, не могут оставлять комментарии в данной новости.


    Неофициальный сайт "Санкт-Петербургский институт машиностроения"
    Связь с администрацией
    Карта сайта
    Все права защищены 2007-2008 ©